
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

July 12th 2012

Administration

● Midterms grades are posted.

● They will be returned during the second break/office
hours.

● Mean was 22, Median 23, stdev 10.
● Assignment 2 update.

● Help Centre is in BA2270 2-4 M-R.

July 12th 2012

Algorithms

● So far we've looked at common components of
programming languages.

● And how to get them to implement what we
want to computer to do.

● We've mentioned testing as a way to get correct
programs.

● How do we decide what code we want to test in
the first place?

July 12th 2012

Designing Code

● When we design code, we don't necessarily
want to be writing code.
● It's a lot of work.
● We need to worry about syntax and things that

aren't core to the design.

● We would like a generic language to talk about
code at a high level.

July 12th 2012

Pseudocode

● Half-code.
● A way of writing 'language-independent' code.
● All languages have variables and types.
● All languages have loops and if statements.
● In general we write at a level that we think could

be implemented in any languages.

July 12th 2012

Pseudocode

● Python code:
for i in range(len(my_list)):

 if my_list[i]%2 == 0 :

 my_list[i] = my_list[i]+1

● Pseudocode:

for every element e in my_list

 add 1 to the even-indexed elements.

● Note that pseudocode does use indenting to
indicate loops and separate bits of code.

July 12th 2012

Sorting

● We're going to using sorting as a case study.
● This is a core and thus very well-studied

problem in the literature.
● But it's also simple to explain.
● We will be covering basic methods for sorting.
● Our methods will be inferior to pythons
list.sort() method.

July 12th 2012

How do we approach the problem?

● Before we start actually solving the problem, we
want a formal definition.
● It is really hard to write code before you know

exactly what you're trying to accomplish.
● This formal definition allows us to start writing

testing code.

● We may also want to consider some small
examples to see what the result of the definition
should be on them.
● This should help catch poor definitions.

July 12th 2012

Sorting - Problem Definition

● We assume that we're given a list with n elements.

● Using n to denote input size is standard.
● We assume that we want the list sorted in non-

decreasing order.

● non-decreasing to handle case of duplicate
elements.

● We assume we can only do pair-wise comparisons.

July 12th 2012

Testing

● How might we test code that we think
successfully sorts a list?
● Hard coding tests is one way.

● Suppose we want random tests?
● Is there something we could do to a list to check if it

is sort?
● Recall the definition of a sorted list being one in

which the elements are in non-decreasing order.

July 12th 2012

Testing Criterion

● If we're sorting a list, how do we know when
we're done and the list is sorted?

● One way is to check every adjacent pair of
elements.

● If (in our case) the larger indexed element is at
least as large as the smaller indexed element
for every pair, the list is sorted.
● Why?

July 12th 2012

Common Approaches to Finding Solutions

● Look at several inputs.
● Try and decide which would be 'easier' to solve.
● Then see if there's anything that one can do to

make a hard input closer to one that is 'easy to
solve'.

● Alternately, try and restrict the inputs in some
way, and solve the restricted problem.
● Then generalise.

July 12th 2012

Pseudocode and Problem Solving

● Pseudocode is the point at which you want to
catch design problems.

● Corner cases are much easier to catch when
you actually have working code.

July 12th 2012

Sorting Distance.

● We just saw several lists which we all 'almost
sorted' in different ways.
● The first n-1 elements are sorted.
● The smallest n-1 elements are sorted.
● Each element was at most 1 away from it's final

spot.
● We want to generalise this, and then come up with

something that can move a 'partially solved solution' to
a 'fully solved solution'.

July 12th 2012

Insertion

● Suppose we have a list in which the first i
elements are sorted.

● What can we do to make sure the first i+1
elements are sorted?

● How long does this take?

July 12th 2012

Select

● Suppose we have a list in which the first i
elements are sorted and the smallest elements
in the list.

● What can we do to make sure the first i+1
elements are sorted and the smallest elements
within the list?

● How long does this take?

July 12th 2012

Bubble

● Suppose we have a list in which each element
is at most i steps away from its final position.

● What can we do to make every element be at
most i-1 steps away from it's final position?

● How long does this take?

July 12th 2012

Break, the first.

July 12th 2012

Loop Invariants

● Often times loops can be hard to implement, or
it can be unclear what a loop is doing.

● A useful tool for analysing loops is a loop
invariant.

● A loop invariant is a statement that is true every
time to loop begins.
● So it depends on the loop index.

● They have both informative and imperative
functions.

July 12th 2012

Loop Invariant Example

for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the

biggest that we've seen. So a loop invariant
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.

July 12th 2012

Pseudocode and Loop Invariants

● Loop invariants are really useful in pseudocode,
since they point towards the overall design of
the program.

● Also can be useful in finding +/- 1 errors.
● That is, they are useful in both the actual and

pseudocode stages.

July 12th 2012

Sorting Overview

● We covered three types of sort: Bubble,
Insertion, and Selection.

● Selection sort minimises swaps.
● Insertion sort is optimal for small data.
● Bubble sort is optimal for nearly sorted data.

July 12th 2012

Sorting in practice.

● In practice bubble, selection, and insertion sort
are all sort of slow.

● There are better sorting methods out there.
● The most commonly used ones are merge, heap

and quick sort).
● These all rely on recursion.

● Python uses an adaptive form of merge sort.
● Bubble and insertion sort have specific

instances in which they are useful and are
used.

July 12th 2012

Break the second.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

